Layer-controlled CVD growth of large-area two-dimensional MoS2 films.

نویسندگان

  • Jaeho Jeon
  • Sung Kyu Jang
  • Su Min Jeon
  • Gwangwe Yoo
  • Yun Hee Jang
  • Jin-Hong Park
  • Sungjoo Lee
چکیده

In spite of the recent heightened interest in molybdenum disulfide (MoS2) as a two-dimensional material with substantial bandgaps and reasonably high carrier mobility, a method for the layer-controlled and large-scale synthesis of high quality MoS2 films has not previously been established. Here, we demonstrate that layer-controlled and large-area CVD MoS2 films can be achieved by treating the surfaces of their bottom SiO2 substrates with the oxygen plasma process. Raman mapping, UV-Vis, and PL mapping are performed to show that mono, bi, and trilayer MoS2 films grown on the plasma treated substrates fully cover the centimeter scale substrates with a uniform thickness. Our TEM images also present the single crystalline nature of the monolayer MoS2 film and the formation of the layer-controlled bi- and tri-layer MoS2 films. Back-gated transistors fabricated on these MoS2 films are found to exhibit the high current on/off ratio of ∼10(6) and high mobility values of 3.6 cm(2) V(-1) s(-1) (monolayer), 8.2 cm(2) V(-1) s(-1) (bilayer), and 15.6 cm(2) V(-1) s(-1) (trilayer). Our results are expected to have a significant impact on further studies of the MoS2 growth mechanism as well as on the scaled layer-controlled production of high quality MoS2 films for a wide range of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath

An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...

متن کامل

Process Control of Atomic Layer Deposition Molybdenum Oxide Nucleation and Sulfidation to Large-Area MoS2 Monolayers

Recent advances in the field of two-dimensional (2D) transition metal dichalcogenide (TMD) materials have indicated that atomic layer deposition (ALD) of the metal oxide and subsequent sulfidation could offer a method for the synthesis of large area two-dimensional materials such as MoS2 with excellent layer control over the entire substrate. However, growing large area oxide films by ALD with ...

متن کامل

The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment

A growth model is proposed for the large-area and uniform MoS2 film grown by using sulfurization of pre-deposited Mo films on sapphire substrates. During the sulfurization procedure, the competition between the two mechanisms of the Mo oxide segregation to form small clusters and the sulfurization reaction to form planar MoS2 film is determined by the amount of background sulfur. Small Mo oxide...

متن کامل

A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy

MoS2 is a highly interesting material, which exhibits a crossover from an indirect band gap in the bulk crystal to a direct gap for single layers. Here, we perform a direct comparison between large-area MoS2 films grown by chemical vapor deposition (CVD) and MoS2 flakes prepared by mechanical exfoliation from mineral bulk crystal. Raman spectroscopy measurements show differences between the in-...

متن کامل

Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate

Vapor-phase growth of large-area two-dimensional (2D) MoS2 nanosheets via reactions of sulfur with MoO3 precursors vaporized and transferred from powder sources onto a target substrate has been rapidly progressing. Recent studies revealed that the growth yield of high quality singlelayer (SL) MoS2 is essentially controlled by quite a few parameters including the temperature, the pressure, the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2015